Using "ipconfig" To Determine If a Device Is On the Right Subnet

Note: If available, we highly recommend consulting an IT or networking professional when dealing with network issues.

Objective

Use Ipconfig to check if a device is on the correct subnet.

Knowing what subnet a device is located in can help with network troubleshooting (especially when a device is not drawing service), as well as determining an available range when setting a static IP. It will also ensure you are able to use a computer on the network to access a device’s web interface (GUI).

Applies To

- Networking
- Subnets

Procedure

Obtain IP Address and Subnet Mask

1. Use the phone GUI to navigate to **Status > TCIP/IP parameters**.
2. Note the **IP address** and **subnet mask**.
3. From a computer on the intended network, open a command/terminal prompt.
 - Windows: In the **Run or Search bar**, type `cmd` and click **Enter**. Then type `ipconfig` and click **Enter**.
 - Mac: Press **Command+Space** and type `terminal`, then click **Enter**. In the terminal, type `ifconfig` and click **Enter**.

https://support.8x8.com/us/equipment-devices/network-devices/using_%22ipconfig%22_to_determine_if_a_device_is_on_the...
4. Note the **subnet mask**.

The subnet mask of the computer should match the phone. Rearrange devices to ensure both the and computer are on the network the phones are intended to reside on.

Compare IP Addresses to Determine if Devices Are on the Same Subnet

1. **Calculate network block.**
 1. In the example above (Step 3), we have a subnet mask of 255.255.255.0. **This is the size of the network block.**
 2. In each of the 4 sections, if the value is 255, we will substitute that with a 0.
 3. If there is any other number in the section, we then **subtract that number from 256**.
 4. In the example above, we would get 0.0.0.256 (256 - 0 = 256). This is a block of **256 numbers**.

2. **Compare both IP address/subnet combinations as the addresses must match for any section where the subnet value is 255.**

The key is to match up the subnet and the IP address.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.192.0.93</td>
<td>255.255.255.0</td>
<td>10.192.0.175</td>
<td>These two IP addresses are in the same subnet.</td>
</tr>
<tr>
<td>10.192.1.93</td>
<td>255.255.255.0</td>
<td>10.192.1.175</td>
<td>These two IP addresses don’t match in the 3rd position and are in different subnets.</td>
</tr>
<tr>
<td>10.192.0.93</td>
<td>255.255.255.0</td>
<td>10.192.1.175</td>
<td>These two IP addresses only have to match in the first 2 sections, and are in the same subnet.</td>
</tr>
<tr>
<td>10.192.175</td>
<td>255.255.252.0</td>
<td>10.192.175</td>
<td>These IP addresses are in the same subnet. As noted above, 252 in the 3rd section of the subnet mask gives 4 blocks of 256 addresses. The blocks are sequential: 0-3, 4-7, 8-11, etc. Since the 3rd position of each address is in the range of 0-3, they are in the same subnet. If the 2nd address was 10.192.175, it would be in a different subnet (a range of 4-7).</td>
</tr>
</tbody>
</table>

The most common subnet you will see is **255.255.255.0**. So if two addresses match in the first 3 sections (reading left to right), and the subnet is 255.255.255.0 for both addresses, they are in the same subnet.